Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

F. Betül Kaynak, ${ }^{\text {a }}$ Süheyla

Özbey, ${ }^{\text {a* }}$ Hülya Senöz ${ }^{\text {b }}$ and Nazan Tunog̃lu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey, and
${ }^{\mathbf{b}}$ Department of Chemistry, Hacettepe University, Beytepe 06532, Ankara, Turkey

Correspondence e-mail:
gulsen@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.124$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Trichloroacetyl-1-(1-pyrrolidinyl)cyclopentene

The structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{NO}$, is stabilized by intra- and intermolecular hydrogen bonds. The cyclopentene ring adopts an envelope conformation while the pyrrolidinyl moiety adopts a twist conformation.

Comment

Besides the well known methods for the acylation of enamines (Cook, 1969), we have recently investigated the synthesis of α and α^{\prime}-diacetylated enaminoketones in the presence of zinc, which is an unusual catalyst for acylation reactions (Şenöz \& Tunoglu, 2003). The crystal structures of 2,6-bis-(trichloroacetyl)-1-(1-morpholinyl)cyclohexene and 2,6-bis(trichloroacetyl)cyclohexanone have been reported elsewhere (Özbey et al., 2000, 2003). Zinc catalyses ketene formation in preference to [2+2]-cycloaddition reactions (Şenöz \& Yıldırır, 1996; Brady, 1981). However, we obtained the diacetylated product, 2,6-bis((trichloroacetyl)-1-(1-pyrrolidinyl)cyclopentene from the corresponding cyclic enaminoketone, 1-(1-pyrrolidinyl)cyclopentene, with zinc as catalyst. The same enamine yielded the monoacetylated product, 2-trichloroacetyl-1-(1-pyrrolidinyl)cyclopentene, by the use of triethylamine to prevent salt formation without using zinc, as in the literature.

(I)

Here we report the crystal structure of 2-trichloroacetyl-1-(1-pyrrolidinyl)cyclopentene, (I), obtained by the reaction of 1-(1-pyrrolidinyl)cyclopentene with trichloroacetyl chloride. The X-ray crystal structure analysis shows that the cyclopentene ring adopts an envelope conformation, twisted at C5. Atom C5 is displaced from the $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 6 / \mathrm{C} 7$ mean plane by -0.430 (3) \AA. The puckering parameters (Cremer \& Pople, 1975) of this ring are $Q=0.299$ (3) \AA and $\theta=232.1$ (5) ${ }^{\circ}$. The pyrrolidinyl moiety deviates from the twist conformation, as shown by the ring-puckering parameters of $Q=0.309$ (4) \AA and $\theta=273.0(5)^{\circ}$. The ketone group at C3 and the pyrrolidinyl ring at C 7 are slightly twisted in opposite directions, with torsion angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$ and $\mathrm{C} 3-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$ of -171.5 (2) and $177.4(2)^{\circ}$, respectively. The hydrogen-bond interaction between atoms O 1 and C 11 might be the cause of the planarity of this part of the molecule.

Received 2 May 2003
Accepted 12 May 2003
Online 23 May 2003

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of the molecule of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The structure is stabilized by inter- and intramolecular hydrogen bonds. Details of the hydrogen-bonding geometry are given in Table 2.

Experimental

A solution of freshly distilled trichloroacetyl chloride (17.8 mmol , 3.23 g) in dry ether was added dropwise over a period of 1 h to a cooled mixture (in an ice-salt bath) of triethylamine (17.8 mmol , 1.80 g) and 1-(1-pyrrolidinyl)cyclopentene ($17.8 \mathrm{mmol}, 2.69 \mathrm{~g}$) in 50 ml anhydrous ether while stirring under a nitrogen atmosphere. The reaction mixture was stirred overnight, then ammonium chloride was removed by filtration and the solvent was evaporated under reduced pressure. The residue was dissolved in hexane, dried over MgSO_{4}, filtered and then the solvent was evaporated. The crude product was recrystallized from hexane to give $2.74 \mathrm{~g}(55 \%)$ 2-tri-chloroacetyl-1-(1-pyrrolidinyl)cyclopentene as a pure yellow solid. M.p. $363 \mathrm{~K} ;$ IR $(\mathrm{KBr}): 1624(\mathrm{C}=\mathrm{O}), 1520(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: δ 2.90-3.00 ($t, 4 \mathrm{H}, \mathrm{NCH}_{2}$), 2.50-2.65 ($t, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 1.90-2.00 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.75-1.85\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{NO}$
$M_{r}=282.58$
Orthorhombic, Pbca
$a=11.4236$ (10) £
$b=10.2623$ (9) \AA
$c=21.899$ (3) \AA
$V=2567.3(5) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10.2-18.2^{\circ}$
$\mu=0.69 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, light yellow
$0.48 \times 0.48 \times 0.12 \mathrm{~mm}$
$D_{x}=1.462 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.029$
\quad diffractometer	$\theta_{\max }=26.3^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 14$
Absorption correction: ψ scan	$k=-12 \rightarrow 12$
\quad (North at al., 1968	$l=-27 \rightarrow 0$
$T_{\min }=0.732, T_{\max }=0.922$	3 standard reflections
5032 measured reflections	frequency: 120 min
2597 independent reflections	intensity decay: 3%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0651 P)^{2} \\
&+0.494 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.124$
$S=1.08$
2597 reflections
145 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.575(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.517(4)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.763(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.509(3)$
$\mathrm{C} 1-\mathrm{Cl} 3$	$1.776(2)$	$\mathrm{C} 7-\mathrm{N} 11$	$1.322(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.778(2)$	$\mathrm{C} 8-\mathrm{N} 11$	$1.485(3)$
$\mathrm{C} 2-\mathrm{O} 1$	$1.228(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.496(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.412(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.474(4)$
$\mathrm{C} 3-\mathrm{C} 7$	$1.399(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.513(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.528(3)$	$\mathrm{C} 11-\mathrm{N} 1$	$1.465(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.532(4)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$111.19(16)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 3$	$129.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 3$	$108.69(16)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$118.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 2$	$112.06(16)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 6$	$110.9(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$126.2(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$104.1(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$114.77(19)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$105.9(2)$
$\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 2$	$124.4(2)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$105.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$127.2(2)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$104.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$102.7(2)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 11$	$125.44(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$105.2(2)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$122.4(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$104.0(2)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 8$	$110.40(19)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 3$	0.97	2.73	$3.434(3)$	130
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.54	$3.502(3)$	171
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.50	$3.388(4)$	152
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 1$	0.97	2.32	$2.792(3)$	109

Symmetry codes: (i) $2-x, 1-y,-1-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y,-1-z$.
H atoms were positioned geometrically $0.97 \AA$ from their parent atoms, and their displacement parameters were refined isotropically, using the riding-model approximation.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

References

Brady, W. T. (1981). Tetrahedron, 37, 2949-2966.
Cook, A. G. (1969). Enamines, Synthesis, Structure and Reactions, pp. 115-168. London: Marcel Dekker.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Özbey, S., Kaynak, F. B., Şenöz, H. \& Tunoglu, N. (2003). Z. Kristallogr. In the press.

organic papers

Özbey, S., Şenöz, H. \& Tunoglu, N. (2000). Anal. Sci. 16, 1005-1006. Şenöz, H. \& Tunoglu, N. (2003). Chem. Pharm. Bull. 51, 444-447.
Şenöz, H. \& Yıldırır, S. (1996). Turk. J. Chem. 20, 168-173.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

